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Abstract
We report on modulational instability (MI) on a DNA charge transfer model known as the
Peyrard–Bishop–Holstein (PBH) model. In the continuum approximation, the system reduces
to a modified Klein–Gordon–Schrödinger (mKGS) system through which linear stability
analysis is performed. This model shows some possibilities for the MI region and the study is
carried out for some values of the nearest-neighbor transfer integral. Numerical simulations are
then performed, which confirm analytical predictions and give rise to localized structure
formation. We show how the spreading of charge deeply depends on the value of the
charge–lattice-vibrational coupling.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The way DNA conducts charge remains an intriguing
phenomenon to physicists and biologists alike. A specific
motivation for studying this problem is an experiment on
charge transport along a DNA molecule. Each of the two
DNA strands may be viewed as a chain, each site of which
is one of the four bases: guanine (G), adenine (A), cytosine (C)
and thymine (T), having different ionization potentials. Thus,
if one moves an electron from the chain, the resulting hole
feels the on-site potentials VG < VA < VC < VT. It was
thus suggested many years ago that the overlapping π orbitals
of the nucleotide bases form a common delocalized electron
system in the whole DNA macromolecule and so a Bloch-
type description of the electron states becomes possible [1–3].
There are the results of some recent measurements indicating
that DNA behaves as a well-conducting one-dimensional
molecular wire [4, 5]. In contrast, it was reported that DNA is
insulating [6] and, for short oligomers built up from base pairs
of the same type, semiconductivity was observed [7]. This

qualitative discrepancy is also shared by theoretical findings
so that it remains unclear whether charge migration is possible
or not in DNA. As a consequence, a detailed understanding of
the charge transport mechanism of DNA also remains unclear.
In this framework, we aim at studying such a phenomenon
through modulational instability (MI). MI, which results from
the interplay between dispersion and nonlinearity, has been
shown to be a precursor to soliton and bubble formation. In
the framework of DNA dynamics, soliton formation through
MI has been investigated [8], which shows the possibility of
soliton and the bearing of localized structures. So, particular
attention will be paid to the patterns of charge spreading in the
lattice.

As widely known, different attempts to model the
charge transport of DNA were based on transport via
coherent tunneling [1], classical diffusion under the condition
of temperature-driven fluctuations [9], incoherent phonon-
assisted hopping [10, 11] and variable range hopping between
localized states [12] and solitons [13]. Recently, a polaron
model has been shown to provide promising results as

0953-8984/09/335101+07$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/33/335101
mailto:contab408@hotmail.com
mailto:mohdoufr@yahoo.fr
mailto:tckofane@yahoo.com
http://stacks.iop.org/JPhysCM/21/335101


J. Phys.: Condens. Matter 21 (2009) 335101 C B Tabi et al

well [14–19], especially for explaining the temperature
dependence of DNA conductance [14, 15, 18]. Moreover, an
additional advantage of the polaron model in comparison to
the popular models such as the tight-binding approach or the
system of kinetic equations is that it includes the interaction of
the migrating charge with the DNA lattice.

The Peyrard and Bishop (PB) model [20] concentrates
on transversal openings of base pairs. It is one of the
simplest models that investigates DNA at the scale of a base
pair [20, 21]. The complex double-stranded molecule is
described by postulating some simple effective interactions
among the bases within a pair and along the strands. The
model has been successfully applied to analyze experiments on
the melting of short DNA chains [22]. Furthermore, it allows
us to easily include the effect of heterogeneities [23] yielding
a sharp staircase structure of the melting curve (number of
open base pairs as a function of the temperature T ) [24].
Beyond its original motivation to explain the denaturation,
the PB model has an intrinsic theoretical interest as one of
the simplest one-dimensional systems displaying a genuine
phase transition [25, 26]. Against this background, we use
the Peyrard–Bishop–Holstein (PBH) model [16, 18] to study
charge transport, through MI, in the DNA molecule. In fact,
the PBH model combines a quantum-mechanical treatment of
charge motion with a classical treatment of the lattice distortion
dynamics in a highly flexible DNA molecule. For the sake of
simplicity, to perform the linear stability analysis, we reduce
the PBH model to a modified Klein–Gordon–Schrödinger
(mKGS) model and numerical experiments are performed in
the original PBH model.

This paper is therefore organized as follows: in section 2,
we present the model and we reduce it to its continuum
approximation. Linear stability analysis is also performed in
this part and predictions on localized structure formation are
discussed. In section 3, we perform numerical experiments on
MI and we show that the analytical predictions are satisfied.
A particular attention is paid to the dependence of charge
density on the charge-vibrational coupling constant. Section 4
is devoted to some concluding remarks.

2. The PBH model and linear stability analysis

2.1. Model

The PBH model, as already said, was introduced [18, 27] as a
coupled charge–lattice model for carrier migration in the high
flexible DNA molecule. In a polychain, each strand contains
only one base type. The purine and pyrimidine bases are
characterized by different ionization potentials (�0.1 eV [28]).
Because they belong to opposite strands in the poly-DNA,
the main mechanism of charge migration is longitudinal one-
dimensional tunneling along a single strand containing purine
bases. The application of the polaron model for the description
of the charge transfer in the poly-DNA molecule is limited
by temperature due to the dependence on structural disorder
induced by the polaron on the thermal fluctuations [18]. The
model we consider in this work is therefore free of the influence
of temperature and structural disorder [18]. Consequently, in

the semiclassical approximation [16, 29], the coupled system
of nonlinear equations based on this model is

ih̄
dψn

dt
= −V (ψn+1 + ψn−1)+ χynψn (1)

m
d2yn

dt2
= −dVM(yn)

dyn
− dW (yn, yn−1)

dyn

− dW (yn+1, yn)

dyn
− χ |ψn|2 (2)

where ψn is the probability amplitude for the charge on the
nth site, V is the nearest-neighbor transfer integral between
base pairs, χ is the charge-vibrational coupling constant, yn is
the amount by which the nth base pair is displaced from its
equilibrium position, m is the base pair mass on the single
site, VM(yn) is the on-site Morse potential, which describes
interactions between hydrogen bonds in a pair and W (yn, yn−1)

is the interaction of neighboring stacked base pairs. The
expressions for VM and W are given by [30]

VM(yn) = D(e−ayn − 1)2,

W (yn, yn−1) = 1
2 S[1 + ρe−b(yn+un−1)](yn − yn−1)

2.
(3)

It is well known that an AT base has two hydrogen bonds
while a GC pair has three hydrogen bonds. In this framework,
D is the dissociation energy and a stands for a parameter
homogeneous to the inverse of a length, which sets the
spatial scale of the potential. On the other hand, as
soon as one of the two interacting base pairs is open (and
not necessarily both simultaneously), the effective coupling
constant of W (yn, yn−1) drops from S(1 + ρ) to S. This has
been shown to bring about a very large qualitative improvement
which leads to a sharp transition when realistic parameters are
used [29, 30]. In this framework, the parameters used in this
work are from [29, 30] and they are d = 3.4 Å, m = 300 amu,
S = 0.04 eV Å

−2
, D = 0.04 eV, a = 4.45 Å

−1
, ρ = 0.5 and

b = 0.35 Å
−1

for the lattice equation (1) and χ = 0.6 eV Å
−1

for the charge–lattice coupling constant [29].
Charge migration in DNA depends on realistic values

of parameters, specifically those related to charge transport
and spreading. The values of almost all the parameters are
borrowed from experiments, but the value of the transfer
integral between nearest pairs remains controversial and
therefore raises questions on the validity of the PBH model.

According to experiments, the value of the electron
overlap integral V is 0.01 eV [31, 32], which is smaller
than the thermal energy kBT ∼ 0.026 eV. On the other
hand, according to theoretical estimations within the quantum-
chemical theory, the value of V lies in the range 0.05–
0.3 eV [28, 33, 34]. Because of this discrepancy between
theoretical estimations and experimental data, the averaged
value widely used for V is 0.1 eV [28, 29]. However, from
the values of parameters proposed above, together with the
averaged value of V , the adiabatic parameter h̄ωph/V , where

ωph =
√

1
m [2a2D + 4S(1 + ρ) sin2(qd/2)] is a characteristic

frequency of the lattice phonon (∼7 THz), is of the order of
0.05, i.e. well inside the adiabatic regime. This justifies the
use of the semiclassical approximation.
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The system of units used (amu, Å, eV) defines a time
unit (t.u.) equal to 0.010 21 ps. With all these elements,
equation (2) can be written as

mÿn = S(yn+1 + yn−1 − 2yn)+ 1
2 S[2 + bρ(yn+1 − yn)]

× (yn+1 − yn)e
−b(yn+1+yn) − 1

2 S[2 − bρ(yn − yn−1)]
× (yn − yn−1)e

−b(yn+yn−1) − 2a D(e−ayn − e−2ayn)

− χ |ψn |2. (4)

Let us recall, in the absence of charge (χ = 0), equation (4)
is the generic equation of the Dauxois–Peyrard–Bishop model
of DNA dynamics [30]. This model, which is an enhancement
of the Peyrard–Bishop model [20], was originally introduced
for a description of the structural behavior (specifically the
dynamics related to bubble opening of the two strands) of the
flexible DNA macromolecule. It has also been widely used in
the study of the local melting (or the thermal denaturation) of
DNA. It cannot therefore support polaronic solution or describe
charge spreading in DNA.

After expanding the terms in exponentials until the third
order, the continuum approximation of equations (1) and (4)
can be written as

i
∂ψ

∂ t
+ P1

∂2ψ

∂x2
+ Q1ψ + Q2 yψ = 0 (5a)

∂2y

∂ t2
− c2

0

∂2y

∂x2
+ c1

2

∂2(y2)

∂x2
+ c2y

(
∂y

∂x

)2

+ ω2
g(y + αy2 + γ y3)+ c3|ψ|2 = 0 (5b)

where

P1 = 2V d2

h̄
, Q1 = 2V

h̄
, Q2 = −χ

h̄
,

c2
0 = kd2

m
, c1 = bSρd2

m
, c2 = −2b2Sρd2

m

c3 = χ

m
, γ = β ′ + 2b2Sρd2

ω2
g

,

β ′ = β + 2b2Sρd2

ω2
g

, ω2
g = 2a2 D

m
, α = −3a

2
,

β = 7a2

6
, k = S(1 + ρ).

(6)

2.2. Linear stability analysis

In order to perform the linear stability analysis of system (5),
we assume that

ψ = ψ0eiω0t , y = y0 (7)

with real constants ω0, y0 and complex constant ψ0. By
substituting the above relation into equation (5), we get

ω0 = Q1 + Q2 y0, ω2
g(y0 + αy2

0 + βy3
0 )+ c2|ψ0|2 = 0.

(8)
By adding a small perturbation in the above equilibrium state,
i.e.

ψ = (ψ0 + εψ1)e
iQ2 y0t , y = y0 + εy1, (9)

and using it to linearize the mKGS system, with the help of
condition (8), we write ψ0 = a1 + ia2, ψ1 = u + iv and we
separate the real and the imaginary parts as follows:

P1
∂2u

∂x2
− ∂v

∂ t
+ Q1u + Q2a1y1 = 0 (10)

P1
∂2v

∂x2
+ ∂u

∂ t
+ Q1v + Q2a2y1 = 0 (11)

and

P1
∂2y1

∂ t2
+ (c1 y0 − c2

0)
∂y1

∂x2
+ ω2

g(1 + 2αy0 + 2βy2
0 )y1

+ 2c3(a1u + a2v) = 0. (12)

Furthermore, inserting u = u0ei(K x−�t) + c.c., v =
v0ei(K x−�t) + c.c. and y1 = y01ei(K x−�t) + c.c. into
equations (10)–(12), where K and � are the perturbation
wavenumber and the frequency, respectively, which are much
smaller than those of the carrier wave, and c.c. stands for
the complex conjugate, we arrive at the general nonlinear
dispersion relation

�4 − P�2 + Q = 0 (13)

where
P = P1 K 4 − [2P1 Q1 − (c1 y0 − c2

0)]K 2 + Q2
1

+ ω2
g(1 + 2αy0 + 2βy2

0 )

Q = (Q1 − P1 K 2)[P1(c1 y0 − c2
0)K

4

− [P1ω
2
g(1 + 2αy0 + 2βy2

0)+ Q1(c1 y0 − c2
0)]K 2

+ Q1ω
2
g(1 + 2αy0 + 2βy2

0 )− 2c3 Q2|ψ0|2].

(14)

Equation (13) has the solutions

�2
+ = 1

2 [P +
√

P2 − 4Q], �2
− = 1

2 [P −
√

P2 − 4Q].
(15)

For the mKGS model to be modulationally stable for any
wavenumber K ,�2± should be positive and this is possible only
if the following conditions are simultaneously satisfied:

P > 0, Q > 0,  = P2 − 4Q > 0. (16)

In this framework, we have plotted, in figure 1, those three
quantities with respect to the wavenumber K and the following
features have been observed:

(1) For P � 0, it is obvious that P = 0 has two non-zero
roots:

K 2
P± = 1

2P1
[2P1 Q1 − (c1y0 − c2

0)± √
P ] (17)

where P = [2P1 Q1 − (c1y0 − c2
0)]2 − 4P1[Q2

1 +
ω2

g(1 + 2αy0 + 2βy2
0)]. Since we are using realistic

values of parameters specific to DNA, the parameter V
of the PBH model has been found to deeply influence the
above condition and the curves for P have been plotted
for its different values (see figure 1(a)). For the three
cases pointed out, i.e. for V = 0.05, 0.10 and 0.15 eV,
we have K 2

P− < 0 < K 2
P+. P > 0 is not satisfied for

K 2 < K 2
P+ and increasing V contributes to reducing the

region of stability but, as a whole, we have�2− < 0 < �2+.
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(a)

(c)

(b)

Figure 1. Parameters of the general nonlinear dispersion relation (13) for m = 300 amu, S = 0.04 eV Å
−2

, D = 0.05 eV, a = 4.45 Å
−1

,
ρ = 0.5, b = 0.35 Å

−1
, χ = 0.6 eV Å

−1
and u0 = |ψ0|2 = 1.

(2) For Q � 0, it also clear that Q = 0 has three non-zero
roots:

K 2
Q1 = Q1

P1
,

K 2
Q±

= P1ω
2
g(1 + 2αy0 + 2βy2

0)+ Q1(c1y0 − c2
0)±

√
Q

2P1(c1y0 − c2
0)

(18)

where

Q = [P1ω
2
g(1 + 2αy0 + 2βy2

0)+ Q1(c1 y0 − c2
0)]2

− 4P1(c1y0 − c2
0)[Q2

1 + ω2
g(1 + 2αy0 + 2βy2

0)

− 2c3 Q2|ψ0|2].
For the set of realistic values chosen, it is clear that K 2

Q− <
0 < K 2

Q+ as depicted in figure 1(b). As in the previous
case, it is clear that increasing V also reduces (but not too
much) the region of stability.

(3) The condition  > 0 is always satisfied when Q < 0.
However, it has been shown that Q > 0 for K 2 > K 2

Q+
and, according to the spectrum of behaviors displayed by
figure 1(c), the inequality

 = d8 K 8 + d6K 6 + d4 K 4 + d2K 2 + d0 > 0 (19)

has many features as depicted in figure 1(c), where

d8 = P2
1

d6 = −2P1[2P1 Q1 − (c1y0 − c2
0)] + 4P2

1 (c1 y0 − c2
0)

d4 = [2P1 Q1 − (c1y0 − c2
0)]2 + 2P1

× [Q2
1 + ω2

g(1 + 2αy0 + 2βy2
0 )− 2c3 Q2|ψ0|2]

+ P1 Q1(c1 y0 − c2
0)− 4P1[P1ω

2
g(1 + 2αy0 + 2βy2

0 )

+ Q1(c1 y0 − c2
0)]

d2 = −2[2P1 Q1 − (c1 y0 − c2
0)]

× [Q2
1 + ω2

g(1 + 2αy0 + 2βy2
0 )− 2c3 Q2|ψ0|2]

− Q1[P1ω
2
g(1 + 2αy0 + 2βy2

0)+ Q1(c1y0 − c2
0)]

+ 4P1[Q1ω
2
g(1 + 2αy0 + 2βy2

0 )+ Q1(c1y0 − c2
0)]

d0 = [Q2
1 + ω2

g(1 + 2αy0 + 2βy2
0)− 2c3 Q2|ψ0|2]2

+ Q1[Q1ω
2
g(1 + 2αy0 + 2βy2

0)+ Q1(c1y0 − c2
0)].

• For V = 0.05 eV, the stability is ensured for K >

0.75π ;
• For V = 0.1 eV, the stability region belongs to the

intervals 0.25π < K < 0.75π and K > 0.80π and
finally

• For V = 0.15 eV, the stability region is found in the
interval 0.2π < K < 0.82π .

In summary, the instability is a purely growing mode for > 0

and we have the growth rate instability � =
√

−�2−. On
the other hand, if  < 0, the solution of (13) is complex.
Consequently, the growth rate is determined by the imaginary
part � = Im(�2±) = ±√||/2.

It is, however, noted that different unstable wavenumber
regimes may appear, either partially superimposed or distinct

4
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from each other. Moreover, the tight-binding hopping
parameter deeply influences the instability growth rate as
shown in figure 2. As a whole, the mKGS system is
modulationally unstable when one of the above conditions is
violated.

3. Numerical experiment

Linear stability analysis can determine the instability domain in
parameter space and predicts qualitatively how the amplitude
of a modulation sideband evolves at the onset of the instability.
Unfortunately, such an analysis is based on the linearization
around the unperturbed carrier wave, which is valid only when
the amplitude of the perturbation is small in comparison with
that of the carrier wave. Clearly, the linear approximation
should fail at large timescales as the amplitude of an
unstable sideband grows exponentially. Furthermore, the linear
stability analysis neglects the additional combination of waves
generated through a wave mixing, which, albeit small at the
initial stage, can become significant at large timescales if its
wavenumber falls in an instability domain. Linear stability
analysis therefore cannot tell us the long time evolution of a
modulated wave.

In order to check the validity of our analytical predictions
and to explore the formation of intrinsically localized modes
in the PBH model, it has been integrated numerically with
a fourth-order Runge–Kutta scheme. The accuracy of the
calculation is checked by monitoring the conservation of the
total energy. Using as the time stept = 5×10−3 and periodic
boundary conditions, the following modulated plane waves are
used as initial conditions:

yn(t = 0) = y0[1 + 0.01 cos(K n)] cos(K0n),

ẏn(t = 0) = y0[1 + 0.01 cos(K n)]ω0 sin(K0n)

ψn(t = 0) = ψ0(1 + 0.01eiK n)eiK0n

(20)

where ω2
0 = ω2

g + 4k sin2( K0
2 ) is the linear dispersion relation

of equation (4), and K and K0 are the wavenumbers for the
perturbation and for the carrier waves, respectively. y0 and
ψ0 stand for the initial displacement and initial probability for
the charge, respectively. For the whole study, we use y0 =
ψ0 = 0.02. Using the realistic values of parameters presented
in section 2, wave pattern formation is investigated with an
insistence on the impact of the charge-vibrational coupling
constant χ .

Beforehand, in figure 3, we see, as expected, the formation
of localized structures which have the shape of soliton-like
objects. This has been done for K = π/64 and K0 = 3π/64.
Two values of χ have been considered: χ = 0.4 eV Å

−1

(figure 3(a)) and χ = 0.8 eV Å
−1

(figure 3(b)). If in
the first case the patterns are large and distributed with a
constant amplitude, the second case shows us how increasing χ
influences the distribution and the amplitude of wave patterns.
The amplitude is high for the first case and increases gradually
for the second. In general, the patterns found here are widely
known in the study of MI in DNA dynamics. Dauxois et al
[30, 35] already suggested that such structures can be precursor

Figure 2. Growth rate versus the wavenumber of the perturbation Q
for m = 300 amu, S = 0.04 eV Å

−2
, D = 0.05 eV, a = 4.45 Å

−1
,

ρ = 0.5, b = 0.35 Å
−1

, χ = 0.6 eV Å
−1

and u0 = |ψ0|2 = 1.

of the creation of the bubble observed experimentally [36, 37]
and in the study of the statistical mechanics of DNA. They
also showed that those structures could be used to describe
the leading phenomena known as replication and transcription.
Since these oscillations of the hydrogen bonds have already
been discussed in a submitted work [38], it would be interesting
to pay more attention to the features of the charge density. In
the meantime, the value of χ determines the decrease in on-site
energy in the charged state geometry and has been established
theoretically to be in the range of 0.3–1.5 eV Å

−1
[39].

Its value predominantly depends on the nature of the state
geometry and its extension, which can be influenced by the
structural parameters of DNA and the solvent environment as
well. The charge in DNA can be spread in two directions:
in parallel to the propagation pathway (longitudinal direction
and perpendicular) transverse direction. The spreading of
the charge in the longitudinal direction significantly decreases
χ [28]. For the transverse case, a charge can occupy a single
purine base that suggests a larger value of χ than does a charge
that is partially delocalized over a base pair [39]. With all this
in mind, one can obviously see, from figure 4, how increasing
χ results in highly localized charge patterns. For χ = 0.4,
the patterns are settled but no longer survive (see figure 4(a)).
Increasing χ to 0.8 makes the electronic patterns to be more
localized but, as seen in figure 4(b), spreads in small radiations
after t = 1000 t.u. and no longer survive after t = 1500 t.u.
In the last cases, i.e. χ = 1.2 and 1.5, the electronic patterns
survive but in the first case (figure 4(c)) they also spread in
small radiations on several sites but, as χ = 1.5, one clearly
sees how the patterns are concentrated on specific sites and
survive for a long time (see figure 4(d)). Thus, increasing χ
results in high localized electronic patterns, which tend to form
thin rows on fewer lattices. This result has been suggested
by Berashevich et al who considered the PBH model in the
presence of an electric field [40]. The suggestion that electron
and charge transfer/transport in DNA might be biologically
important has triggered a series of experimental and theoretical
investigations [7, 41]. Processes that probably use charge or

5
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(a) (b)

Figure 3. The panels show how the initial plane solution wave breaks into a wave train which has the shape of a soliton-like object in the
DNA molecule, as predicted by the analytical predictions, for m = 300 amu, S = 0.04 eV Å

−2
, D = 0.05 eV, a = 4.45 Å

−1
, ρ = 0.5,

b = 0.35 Å
−1

and V = 0.10 eV and (a) χ = 0.4 eV Å
−1

; (b) χ = 0.8 eV Å
−1

.

(a) (b)

(c) (d)

Figure 4. The panels show the space–time evolution of charge instability in the PBH model under the influence of the charge-vibrational
coupling constant for m = 300 amu, S = 0.04 eV Å

−2
, D = 0.05 eV, a = 4.45 Å

−1
, ρ = 0.5, b = 0.35 Å

−1
and V = 0.10 eV with

(a) χ = 0.4 eV Å
−1

; (b) χ = 0.8 eV Å
−1

; (c) χ = 1.2 eV Å
−1

; (d) χ = 1.6 eV Å
−1

.

electron transfer include the function of DNA damage response
enzyme, transcription factors or polymerase co-factors, all of
which play important roles in the cell [7, 41].

4. Conclusion

More than 30 years ago, it was suggested that duplex DNA
might support electron and charge transport in a manner similar

to that of linear chain compounds, namely by tunneling along
overlapping π orbitals located on the base pairs. In the
meantime, several works have been carried out to substantiate
that idea but, unfortunately, the way charges spread in DNA
remains not fully understood yet.

Against this background, using the PBH model, we have
investigated charge spreading through MI. In this framework,
we have shown, in the continuum approximation, through
linear stability analysis that MI can also be considered as a

6
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mechanism for charge spreading in the DNA model. The
probable regions of MI have been discussed in the same
way. Numerical calculations in the original PBH model,
i.e. equation (1), confirm the analytical results. Attention has
been paid to the impact of the charge-vibrational coupling
constant χ and it has been found that increasing the value of
χ better enhances charge spreading, in terms of charge pattern,
in the model under study.

In our previous works [8], it was shown that the
model which describes the stretching of the hydrogen bonds
(equation (2) without charge transfer) can respond to any initial
condition, soliton or non-soliton. In this framework, under MI,
the PBH model exhibits charge transfer in terms of localized
structures and solitonic waves. This profoundly probes that MI
can be used as a mechanism for charge to be transferred in the
DNA duplex. This has been found to be in agreement with
recent results [41] and hereby reinforces the efficiency of MI
in the bearing of localized structures.
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